## SYNTHESISAND ANTIMICROBIAL STUDIES OF SCHIFF BASE DERIVED FROM2-THENOYLTRIFLUOROACETONE AND 4-AMINOANTIPYRINEAND ITSCo(II), Fe(III), Ni(II) AND Cu(II) COMPLEXES

<sup>1,2</sup>N. J. AGBO\*and <sup>1</sup>P. O. UKOHA

<sup>1</sup>Coordination Chemistry and Inorganic Pharmaceuticals Unit,
Department of Pure and Industrial Chemistry,
University of Nigeria, Nsukka, Enugu State, Nigeria

<sup>2</sup>Chemistry Advanced Research Centre, Sheda and Science and Technology Complex
(SHESTCO)P.M.B. 186, Garki-Abuja, Nigeria

\* Corresponding Author Email: agbo.ndj@gmail.com

#### ABSTRACT

A new ligand, 3-[2-(1, 5-dimethyl-3-oxo-2-phenyl-2, 3-dihydro-1H-pyrazol-4-yl) hydrazinylidene]-2thenoyltrifluoroacetone (HPDP) was prepared by diazotization of 4-aminoantipyrine and coupling of the obtained diazonium salt with 2-thenoyltrifluoroacetone. It's Co(II), Fe(III), Cu(II), Ni(II) complexes were synthesized by refluxing the ligand(HPDP) with the metal chlorides in absolute ethanol for 6 hrs. Obtained compounds were characterized by means of melting point, conductivity, elemental analysis UV-Visible, FT-IR, 1H and 1 3C NMR. The molar conductivity values indicated that, [Fe(PDP)(H<sub>2</sub>O)Cl<sub>2</sub>], [Co(PDP)Cl<sub>2</sub>(OH<sub>2</sub>)], [Cu(HPDP)Cl<sub>2</sub>], [Ni(PDP)Cl<sub>2</sub>(OH<sub>2</sub>)] complexes were electrolytes when compared with CuSO4 and KCl salts respectively. The chloride analysis determination revealed the presence of chloride ions inside the coordination sphere of all the complexes. The Uv-Vis, IR, <sup>1</sup>H and <sup>13</sup>CNMR data of the complexes suggest square-planar geometry around Co (II), Cu (II), Ni (II) and octahedral geometry around Fe (III) ions. The ligand is tridentate and the complexes crystalized as M (HPDP). The ligand coordinated through the carbonyl oxygens and nitrogen atom of the azomethine -C=N group. The antimicrobial screening of the ligand and complexes with B.subtilis, E.coli, and P.mirabilis, S. aureus, S. intermedius S. typhi and S. pneumoniae showed more activities for the complexes than the ligand in comparison with standard drugs (Ampicillin and Ciprofloxacin), this implies that the synthesized compounds have potency for possible use as antbacterial agents against resistant strains.

### INTRODUCTION

2-Thenoyltrifluoroacetone is a chelating agent that has been used for the complexation of various metal ions including Mn(II), Co(III), Ni(II Cd(II) and Cu(II) [1]. Thenoyltrifluoroacetone has been reported to possessantitubercular and cytotoxic activities[2]. It has alsobeen used as common inhibitor of mitochondrial electron flux [3] and to analyse the endothelial cell dysfunction [4]. Besides. copper (II)complex of 2Thenoyltrifluoroacetone has been investigated to has anticancer activity against K562 [5].

Schiff bases synthesized from aromatic reactants have variety of applications in biological, inorganic and analytical chemistry [6]. Schiff bases derived from 4-aminoantipyrine have shown wide ranges of biological activities such as antimicrobial activity [7], analgesic [8], antiviral [9] and also

used as precursors in the synthesis of bioactive compounds for **B-lactams** example [10].Inconsistent use of medication has resulted in resistance to available antimicrobial agents. The resistant microorganisms have resulted in high morbidity and mortality. There is need to synthesis more Schiff baseswith high biological potentials to combat these resistant microorganisms by combining compounds with high biological activities. the Herein we report synthesis antibacterial screening of Schiff bases derived 4-aminoantipyrene and Thenoyltrifluoroacetonecompounds.

#### MATERIALS AND METHODS

All chemicals used were analytical grade and were products of Sigma Aldrich. They were used as purchased without further purification unless otherwise stated.

Heating was done on Gallonkaup Magnetic Stirrer/Thermostat hot plate. John-Fisher melting point apparatus was used in determining melting points of compounds. UV Visible spectra were obtained on Cecil UV-Visible spectrophotometer whereas Perkin-Elmer FTIR spectrometer and Bruker DPX 400 NMR spectrophotometer wasused to run <sup>1</sup>H and <sup>13</sup>CNMR spectra of compounds.

Carbon, hydrogen and Nitrogen were determined on a Heraeus Carlo Erba 1108-

CHN Analyser. Conductivity of 1.0 x 10<sup>-3</sup> mol/dm<sup>-3</sup> methanol solution of compounds was determined using WTW-LF90 conductivity.

The microorganisms used for the study, *P.aeruginosa, S.aureus, E.coli, B.sabtilis. S.pneumeniae, Proteusspp, S.intermedius and K.pneumoniae* were clinical isolates obtained from pig, poultry and human. Albino rats were supplied by department of Biochemistry, University of Nigeria Nsukka.

## Synthesis of the ligand (HPDP) and complexes.

Heinosuke's method [11] was employed for synthesizing HPDP. 4-aminoantipyrine (0.1884g, 0.0006 mole) was dissolved in dil. HCl and diazotized with 0.06g/10cm<sup>3</sup> aqueous solution of NaNO<sub>2</sub> 5°C. The diazonium salt was reacted with 6.0 x 10<sup>-4</sup>mol/dm<sup>-3</sup>.2-Thenoyltrifluoroacetone in sodium acetate (2.5g in 150 cm<sup>3</sup> H<sub>2</sub>O). The precipitate formed was filtered, washed with methanol/water, recrystallized and stored over CaCl<sub>2</sub> in a desiccator.

Chloride salts of Fe (III), Cu (II), Co (II) and Ni (II) were reacted separately with HPDP in a 2:1 mole ratio in 50cm<sup>3</sup> ethanol following the method of El. Saied *et.al* [12].

The mixtures were refluxed for 6h at 60°C. The precipitates formed were filtered, dried and stored over CaCl<sub>2</sub> in a desiccator.

Scheme 1: Synthesis of HL

3-[1,5-dimethyl-3-oxo-2-phenyl-2, 3-dihydro-1H-pyrazol-4yl) hydrazinylidene]-2-Thenoyltiflouroacetone

# Antibacterial Screening of HPDP and the complexes

Preliminary antibacterial screening of the compounds in DMSO was done by Agar well diffusion method [13, 14]. Already prepared Nutrient agar and Sabouraud Dextrose Agar (SDA) plates were inoculated with 0.1 cm<sup>3</sup> broth culture of the test bacterial. Using a sterile cork borer, wells (5 mm in diameter and 2.5 mm deep) were bored into the inoculated plate. A 50 mg sample of the each of the compounds was dissolved in **DMSO** and equally diluted to concentration between 0.156 to 10 µg/cm<sup>3</sup> for antimicrobial evaluation. Standard antibiotics Ciprofloxacin, Ampicilin and Gentamycin were used as positive control while sterile DMSO served as negative control.

After incubation at 37 °C, the inhibition zone diameters (IZD) were determined. The antilog of the intercept on the y-axis of IZD<sup>2</sup> verses Log (concentration) plot gave the minimum inhibitory concentration (MIC).

#### RESULTS AND DISCUSSION

# Physicochemical properties of the compounds.

The yield, melting point, colour, texture, conductivity and qualitative chloride content of synthesized compounds are presented in Table 1.

The different colours, yield and melting point of the complexes are high indicators of formation of new compounds from the reaction of the ligand with the metal salts. Comparing the conductivity of the ligand and complexes with KCl (1:1 electrolyte) and CuSO<sub>4</sub> (2:2 electrolytes), it is very obvious that all the complexes with conductivity not close to KCl (1:1 electrolyte) and CuSO<sub>4</sub> (2:2 electrolytes) arenon-electrolytes whereas the ligand is neutral. The formulae they are given also suggest this.

Table 1: Physical properties of HPDP and its complexes.

| Compound                     | Colour | Texture  | %yield | Melting<br>point/°C | Conductivity/(S/cm)   | Cl <sup>-</sup> |
|------------------------------|--------|----------|--------|---------------------|-----------------------|-----------------|
| HPDP                         | Red    | Granular | 30.77  | 120 dec             | $0.08 \times 10^{-6}$ | -               |
| [Fe(PDP)]Cl                  | Black  | Granular | 18.18  | 180 dec             | $1.05 \times 10^{-6}$ | Present (I.S)   |
| [Co(PDP)Cl(H <sub>2</sub> O  | Black  | powder   | 42.42  | 140 dec             | $0.89 \times 10^{-6}$ | Present (I.S)   |
| )]                           |        |          |        |                     |                       |                 |
| [Cu(HPDP)Cl <sub>2</sub> ]   | Black  | Granular | 19.99  | 140 dec             | 51.5x10 <sup>-6</sup> | Present (I.S)   |
| [Ni(PDP)Cl(H <sub>2</sub> O) | Brown  | Granular | 42.42  | 139-140 dec         | 0.28x10 <sup>-6</sup> | Present (I.S)   |
| ]                            |        |          |        |                     |                       |                 |
| Kcl                          | -      | -        | -      | -                   | 1.76x10 <sup>-3</sup> | -               |
| CuSO <sub>4</sub>            | -      | -        | -      | -                   | 7.6x10 <sup>-4</sup>  | -               |

## Legend:

O.S = outer-sphere

I.S = inner-sphere

## C, H, N microanalysis and Mass Spectral Data

Carbon, hydrogen and Nitrogen content of the ligand and complexes are given in Table 2

Table 2. Elemental Analysis of HPDP and its complexes

| Element | Values | HPDP  | [Fe(PDP)Cl <sub>2</sub> (H <sub>2</sub> O) | [Co(PDP)Cl(H <sub>2</sub> O)] | [Cu(HPDP)Cl <sub>2</sub> ] | [Ni(PDP) <sub>2</sub> Cl(H <sub>2</sub> O)] |
|---------|--------|-------|--------------------------------------------|-------------------------------|----------------------------|---------------------------------------------|
| С       | Found  | 52.56 | 42.325                                     | 42.345                        | 41.05                      | 41.62                                       |
|         | %      |       |                                            |                               |                            |                                             |
|         | Cal %  | 52.29 | 39.63                                      | 41.66                         | 40.00                      | 41.68                                       |
| Н       | Found  | 3.43  | 3.77                                       | 3.62                          | 3.485                      | 3.445                                       |
|         | %      |       |                                            |                               |                            |                                             |
|         | Cal %  | 3.44  | 2.78                                       | 2.945                         | 2.70                       | 2.98                                        |
| N       | Found  | 12.78 | 11.325                                     | 11.19                         | 11.04                      | 10.92                                       |
|         | %      |       |                                            |                               |                            |                                             |
|         | Cal %  | 12.84 | 10.222                                     | 10.22                         | 10.0                       | 10.27                                       |
| S       | Found  | 7.32  |                                            |                               |                            |                                             |
|         | %      |       |                                            |                               |                            |                                             |
|         | Cal %  | 7.34  |                                            |                               |                            |                                             |
| F       | Found  | 12.53 |                                            |                               |                            |                                             |
|         | %      |       |                                            |                               |                            |                                             |
|         | Cal %  | 13.07 |                                            |                               |                            |                                             |

The percentage of the elements present determined experimentally is compared with theoretical predictions. This is invery close agreement with the values thereby confirming synthesis of the compounds.

## Electronic Spectral Data of HPDP and the complexes

Table 3 shows the wave length of maximum absorption as the molar absorptivity of ligand and complexes. The solution spectra were obtained in methanol.

Table 3: Electronic spectra of HPDP and its complexes

| λmax (nm) | Λ(cm <sup>-1</sup> )                           | ε(dm³mol-1cm-1)                                                                                                                                                 | Assignment                                                                                                                                                                                                                                                           |
|-----------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 434       | 23041                                          | 368.8209                                                                                                                                                        | $\pi{ ightarrow}\pi^*$                                                                                                                                                                                                                                               |
| 525       | 19048                                          | 218.3406                                                                                                                                                        | $n \to \!\! \pi^*$                                                                                                                                                                                                                                                   |
| 422       | 23697                                          | 97.4257                                                                                                                                                         | $n \to \!\! \pi^*$                                                                                                                                                                                                                                                   |
| 443       | 22573                                          | 480.4077                                                                                                                                                        | $n \to \!\! \pi^*$                                                                                                                                                                                                                                                   |
| 485.      | 20619                                          | 68.3946                                                                                                                                                         |                                                                                                                                                                                                                                                                      |
| 721       | 13869                                          | 22.8363                                                                                                                                                         |                                                                                                                                                                                                                                                                      |
| 415       | 2410                                           | 1130.11                                                                                                                                                         | $\pi{\longrightarrow}\pi^*$                                                                                                                                                                                                                                          |
| 450       | 22222                                          | 565.0356                                                                                                                                                        | $n \to \!\! \pi^*$                                                                                                                                                                                                                                                   |
|           | 434<br>525<br>422<br>443<br>485.<br>721<br>415 | 434       23041         525       19048         422       23697         443       22573         485.       20619         721       13869         415       2410 | 434       23041       368.8209         525       19048       218.3406         422       23697       97.4257         443       22573       480.4077         485.       20619       68.3946         721       13869       22.8363         415       2410       1130.11 |

HPDP has two peaks at 434 and 525 nm which are attributable to  $\pi \to \pi^*$  transitions of the conjugated  $\pi$  bonds (intra-ligand chargetransfer)and  $n \rightarrow \pi^*$  transitions of the nonbonding electrons in HPDP. The molar absorptivity which is 218 dm<sup>3</sup>mol<sup>-1</sup>cm<sup>-1</sup> is in agreement with  $n\rightarrow \pi^*$  transition [15]. The strong K band expected for azo compounds at 270-280 nm is absent thereby indicating nonformation of azo compound but likely a hydrazone[15]. [Co(PDP)Cl(H<sub>2</sub>0)] has one absorption band at 443 nm as observed. This band is  $n \to \pi^*$  transitions of the non-bonding electrons in HPDP[12]. A shift from absorption spectra 525 nmof HPDP to 443 nm in [Co(PDP)Cl(H<sub>2</sub>0)], showing evidence of complexation was observed in the ligand's in spectrum relation to the [Co(PDP)Cl(H<sub>2</sub>0)]spectrum.Only one

absorption band is noticed in the spectrum of  $[Fe(PDP)Cl_2(H_2O)]$ . The band is 422 nm and it is attributed to the  $\pi \rightarrow \pi^*$  transition. This band at 422 nm shifted to a lower wavelength from ligand to complex, indicating coordination of ligand to Fe(III) ion through the azomethine moiety [12].[Cu(HPDP)Cl<sub>2</sub>] complex showed only two absorption bands at 485 and 721 nm. These absorptions show a bathochromic shift, indicating that the ligands are coordinates to metal ions via the oxygen of the carbonyl groups and with the hydrazone nitrogen [16]. Similar observation has been reported in the literature to have distorted square pyramidal geometry[17].  $[Ni(PDP)Cl(H_2O)]$  spectrum shows two strong absorption bands in the ultraviolet region, and they are 415 and 450 nm. The bands are also attributed to the  $\pi \rightarrow \pi^*$ and  $n \to \pi^*$  transitions from the ligand [18, 19].

## Infrared Spectral Data of HPDP and complexes

Comparative data of bands of HPDP and  $[Fe(PDP)Cl_2(H_2O)], [Ni(PDP)Cl(H_2O)]$ [Cu(HPDP)Cl<sub>2</sub>], and  $[Co(PDP)Cl(H_20)]$  are shown in Table 4. A broad band situated at 3423 cm<sup>-1</sup> in HL<sup>2</sup> which shifted to a lower frequency 3392 cm<sup>-1</sup> in  $[Fe(L^2)(H_2O)Cl_2]$ , 3402 cm<sup>-1</sup> in [Co(PDP)(H<sub>2</sub>O)Cl], 3338 cm<sup>-1</sup> in [Ni(PDP)(H<sub>2</sub>O)Cl] and to a higher frequency 3449 cm<sup>-1</sup> in [Cu(HPDP)Cl<sub>2</sub>] was assigned to v(N-H) stretching frequencies[20]. The shifts in (N-H) stretching band to higher frequency 3449 cm<sup>-1</sup> in [Cu(HPDP)Cl<sub>2</sub>] indicated the coordination of hydrazo nitrogen to the metal ion withoutdeprotonation [21]. It also has been reported that the presence of N-H band in the spectra of chelates and its shift to higher frequency indicates the involvement of the N-H lone pair of the electrons in coordination without deprotonation [12, 21]. Therefore shifts bands of N-H group  $[Fe(PDP)(H_2O)Cl_2]$ ,  $[Co(PDP)(H_2O)Cl]$  and [Ni(PDP)(H<sub>2</sub>O)Cl] indicates involvement of N-H lone pair of electrons in coordination with deprotonation[21]. The shoulder band at 17500 cm<sup>-1</sup> in HPDPwhichdisappeared in all the complexes was assigned to v(C=O) of diketone. This indicates that carbonyl group of theneovl was coordinated to the Fe(III), Co(II), Cu(II) and Ni(II) ions without deprotonation. While the band at 1650 cm<sup>-1</sup> in HPDPwhich also shifted to 1659cm<sup>-1</sup>, 1623cm<sup>-1</sup>, 1635cm<sup>-1</sup> 1660  $cm^{-1}$  in [Fe(PDP)(H<sub>2</sub>O)Cl<sub>2</sub>],  $[Co(PDP)(H_2O)Cl],$ [Cu(HPDP)Cl<sub>2</sub>] [Ni(PDP)(H<sub>2</sub>O)Cl] respectively is assigned to carbonyl (C=O) group of pyrazolone. However, carbonyl (C=O) group of pyrazolone is involved in bonding in all the complexes. A medium band at 1512.24 cm<sup>-1</sup> was assigned to (C=N) stretching vibration [21]. This band shifted to 1592, 1594, 1595 and 1570 cm<sup>-1</sup>  $[Fe(PDP)(H_2O)Cl_2],$  $[Co(PDP)(H_2O)Cl],$  $[Cu(H PDP)Cl_2]$  and  $[Ni(PDP)(H_2O)Cl]$ respectively. This is in agreement with previous observations of other azopyrazolones complex. The appearance of new bands in the lower frequency region of complexes at 544  $cm^{-1} - 589 cm^{-1}$ ,  $516 - 526 cm^{-1}$  and 480-506cm<sup>-1</sup> are attributed to metal to oxygen (M-O)[22], metal to nitrogen (M- N) [16]and metal to chlorine (M-Cl) [12] bonds respectively are also evidence of coordination [23].

Table 4. Infrared spectra assignments of HPDP and its complexes

| HPDP      | Fe(PDP)Cl <sub>2</sub> (H <sub>2</sub> O) | Co(PDP)Cl <sub>2</sub> H <sub>2</sub> O | Cu(HPDP)Cl <sub>2</sub> | Ni(PDP)Cl <sub>2</sub> H <sub>2</sub> O | Assignment           |
|-----------|-------------------------------------------|-----------------------------------------|-------------------------|-----------------------------------------|----------------------|
| 3423(br)  | 3392(br)                                  | 3402(br)                                | 3338(br)                | 3338(br)                                | ν N-H                |
| 3099 (w)  | 3062(sh)                                  |                                         |                         |                                         | $v(C\text{-}CH_2)$   |
| 22924(sh) | 2928(sh)                                  | 2925                                    | 2926(sh)                | 2928(w)                                 | $\nu(N\text{-}CH_3)$ |
| 1750(sh)  |                                           |                                         |                         |                                         | v(C = O) of theneoyl |

| 1650(m)                  | 1659(br)                 | 1623(s)                   | 1635(s)                   | 1660(sh)                 | V(C=O) of pyrazolone             |
|--------------------------|--------------------------|---------------------------|---------------------------|--------------------------|----------------------------------|
| 1535(s)                  | 1592(sh)<br>1517         | 1594<br>1583<br>1523      | 1594(s)                   | 1570(m)                  | ν( C=N )                         |
| 1496<br>1457<br>1411     | 1492<br>1456<br>1423     | 1495(sh)<br>1441<br>1403  | 1492(m)<br>1456           | 1493(m)<br>1456<br>1402  |                                  |
| 1384<br>1356             | 1385(sh)<br>1353         | 1377(s)                   | 1384(sh)                  | 1362<br>1318             | Pyrazolone ring stretch          |
| 1231(m)                  | 1280                     | 1288(sh)                  | (s)                       | 1232(m)                  | $\nu$ ( C-F <sub>3</sub> )       |
| 1185(sh)<br>1144         | 1191(sh)<br>1142         | 1159(sh)                  | 1121(sh)                  | 1149(sh)                 | V(C-N)                           |
| 1050(sh)<br>1024         | 1050(w)<br>1023          | 1072(sh)<br>1080<br>1022  | 1024(sh)                  | 1096(sh)<br>1072<br>1054 | V(C=S)                           |
| 935(s)                   | 969<br>926<br>908        | 988<br>942<br>906         | 987<br>919<br>910         | 949(sh)                  | Mono-<br>Substituted<br>benzenes |
| 858(m)<br>828<br>728(sh) | 868(sh)<br>836<br>799(m) | 859(sh)<br>806<br>779(sh) | 894(sh)<br>849<br>760(sh) | 867(sh)<br>821<br>790(m) | cenzenes                         |
| 699<br>656               | 750<br>696(m)<br>626     | 731<br>644(w)<br>630      | 696                       | 759<br>697(sh)           | Ring<br>breathing                |
|                          | 589(sh)                  | 544                       | 594.88(sh)                | 595(sh)                  | (M-O)<br>stretch                 |
|                          | 576 (sh)                 | 526(sh)                   | 516(sh)                   | 520                      | (M-N)<br>stretch                 |
|                          | 501 (sh)                 | 517(m                     | 480(sh)                   | 506(sh)                  | (M-Cl)<br>stretch                |

s-strong, m = medium, w=weak, br = broad.

## Nuclear Magnetic Resonance Spectral Data of HPDP and complexes.

The proton nuclear magnetic resonance spectrum for HPDP as represented in Table 5 show signals at 2.63ppm and 3.28 ppm indicating C-CH<sub>3</sub>, and N-CH<sub>3</sub> methyl protons of the pyrazolone ring respectively. Also, signal at 4.86 ppm shows solvent peaks. Signal at 7.00ppm indicates the N-H proton. The signal around 7.25, 7.41 and 7.56 ppm

revealed phenyl protons [24]. While, peaks at 7.96 (1H, t) and 8.21(1H, d) showed thenoyl protons [24]

The <sup>13</sup>C NMR spectrum data of HPDP is given in Table 5. This revealed only 16 peaks corresponding to the 16 carbon atoms of the HPDP. The ligand existed in hydrazo form.

Table 5<sup>1</sup>H and <sup>13</sup>C - NMR spectral data of HPDP in CDCl<sub>3</sub> relative to TMS (ppm)

#### Proton (1H) data of HPDP <sup>13</sup>C-NMR data of HPDP Position Chemical Peaks ( $\delta$ ) Assignment. shift/ppm of carbon H<sub>2</sub>O (trace impurity) $C_1$ 1.89(2H,s)183.00 C- CH<sub>3</sub> methyl protons $C_2$ 2.63(3H,s)180.32 from pyrazolone ring 3.28(3H,s)N-CH<sub>3</sub> methyl protons $C_3$ 140.65 from pyrazo lone ring Solvent peak $C_4$ 4.856(HDO) 139.16 7.0(1H,s)N-H protons $C_5$ 137.03 7.25 (1H,t) Phenyl protons $C_6$ 129.56 $\mathbf{C}_7$ 7.41(1H,d)Phenyl protons 27.87 7.56(1H,m)Phenyl protons $C_8$ 126.23 7.96(1H,d)Theneoyl ring protons $C_9$ 101.00 8.21(1H,d)Theneoyl ring protons $C_{10}$ 98.50 $C_{11}$ 57.00 C12 47.50 C13 33.69 C14 33.25

C15

C16

22.28

10.05

s- singlet, d- doublet, m-multiplet.

### Structures

Following the results of the elemental analysis, molar conductivity determination, chloride analysis, and electronic, infrared and nuclear

magnetic resonance spectroscopic structures have been assigned to the HPDP and complexes. The infrared data indicated that HPDP coordinated through carbonyl and N-H group.

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

Fig 1: Structure of HPDP

Fig 2: Structure of [Fe(PDP)(H<sub>2</sub>O) Cl<sub>2</sub>]

Fig 4: Structure of [Co(PDP)Cl(OH<sub>2</sub>)] and [Ni(L)CL(OH<sub>2</sub>)]

Fig 3: Structure of [Cu(HPDP)(Cl<sub>2</sub>]

### **Antibacterial Screening**

The inhibition zone diameter (IZD) and minimum inhibitory concentration of the ligand and complexes are shown in Table 6. [Fe(PDP)Cl<sub>2</sub>(H<sub>2</sub>O)] and [Cu(HPDP)Cl<sub>2</sub>] were active against *B.subtilis*, bacteria with the inhibition zone diameter (IZD) range of 16-25 mm, while the standard drugs are active against these bacteria with IZD range of 0.16-100 mm.

The IZDs of [Fe(PDP)Cl<sub>2</sub>(H<sub>2</sub>O)] and [Cu(HPDP)Cl<sub>2</sub>] within the concentration range of  $0.31-10~\mu g/~cm^3$  are presented in Tables 7. The IZDs of the compounds against susceptible organisms were within the range of 5-25 mm.

Table 6: Sentitvity Test for H PDP and its complexes with some standard controls

| Microorganism        | H PDP | В | E  | F  | Н | A    | G    | С    |
|----------------------|-------|---|----|----|---|------|------|------|
| B.subtilis           | -     | - | 21 | -  | - | 0.63 | 0.16 | 0.16 |
| S.                   | -     | - | 20 | 22 | - | 100  | 2.5  | 2.5  |
| Pneum                |       |   |    |    |   |      |      |      |
| P.aeriginosa         | -     | - |    | -  | - | 100  | 50   | 50   |
| E.coli(Eco 6)        | -     | - | 19 | -  | - | 100  | 6.25 | 6.25 |
| E.coli (Eco 13)      | -     | - | 20 | -  | - | 100  | 50   | 50   |
| S.aureus             | -     | - | 21 | 16 | - | 2.5  | 2.5  | 2.5  |
| P. mirabilis         | -     | - |    | 25 | - | 100  | 100  | 100  |
| S.intermedius        | -     | - |    |    | - | 2.5  | 2.5  | 2.5  |
| (G101)               |       |   |    |    |   |      |      |      |
| <i>K</i> .pneumoniae | -     | - |    |    | - | 100  | 100  | 100  |

Where A= Ampicilin, B= [Co(PDP)Cl( $H_2O$ )], E= [Fe(PDP)Cl<sub>2</sub>( $H_2O$ )], F= [Cu(H PDP)Cl<sub>2</sub>], H= [Ni(PDP)Cl( $H_2$ )], G= Gentamicin and C= Ciprofloxacin.;;

**Table 7:Inhibition Zone Diameter (IZD) of** [Fe(PDP)Cl<sub>2</sub>(H<sub>2</sub>O)] and [Cu(HPDP)Cl<sub>2</sub>]

| Complex               | organisms      | Zone of inhibition (mm). |        |                 |              |                 |                 |
|-----------------------|----------------|--------------------------|--------|-----------------|--------------|-----------------|-----------------|
|                       |                | 10μg/                    | 5μg/   | 2.5µg/          | -<br>1.25μg/ | $0.625 \mu g/c$ | $0.3125 \mu g/$ |
|                       |                | $cm^3$                   | $cm^3$ | cm <sup>3</sup> | $cm^3$       | $m^3$           | cm <sup>3</sup> |
| $[Fe(PDP)Cl_2(H_2O)]$ | B. subtilis    | 21                       | 19     | 16              | 14           | 12              | 8               |
| )]                    |                |                          |        |                 |              |                 |                 |
|                       | S.pneumenia    | 20                       | 18     | 15              | 13           | 10              | 7               |
|                       | E.coli(Eco 6)  | 19                       | 16     | 15              | 12           | 9               | 6               |
|                       | E.coli(Eco 13) | 20                       | 18     | 16              | 14           | 11              | 7               |
|                       | S. aureus      | 21                       | 18     | 15              | 11           | 9               | 7               |
|                       | P.mirabilis    | 17                       | 14     | 12              | 9            | 6               | 4               |
|                       | S.intermedius  | 23                       | 18     | 14              | 11           | 7               | 4               |
|                       | (G101)         |                          |        |                 |              |                 |                 |
| $[Cu(HPDP)Cl_2]$      | S.pneumonia    | 22                       | 19     | 14              | 11           | 8               | 6               |
|                       | S.aureaus      | 16                       | 14     | 12              | 10           | 7               | 5               |
|                       | P. mirabilis   | 25                       | 20     | 15              | 10           | 7               | 6               |

The Minimum Inhibitory Concentration (MIC) of  $[Fe(PDP)Cl_2(H_2O)]$  and  $[Cu(HPDP)Cl_2]$  were obtained from the graphs. Figures 5-7

show that MIC obtained for the compounds were within the range of 0.1003 - 0.1090  $\mu\text{g}/$   $\text{cm}^3$ 

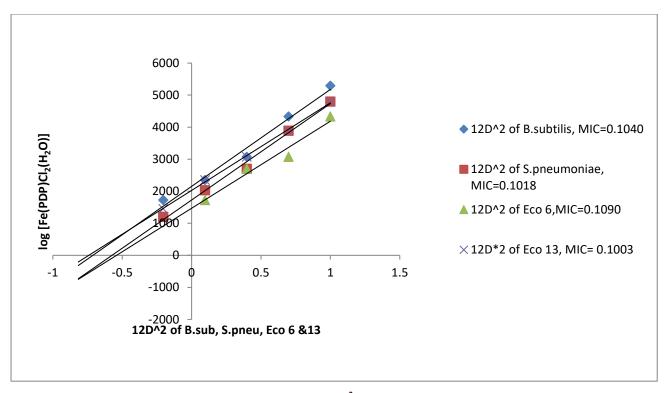



Figure 5: Aplot of Log [Fe(PDP)Cl<sub>2</sub>(H<sub>2</sub>O) against IZD<sup>2</sup> of B.sub, S.pneu, Eco 6 and 13

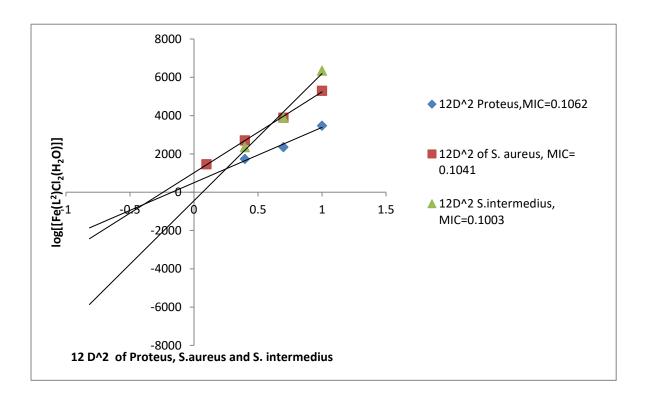



Figure 6: Plot of log[[Fe(L²)Cl<sub>2</sub>(H<sub>2</sub>O)]] against IZD²proteus, S. aureus and S. intermedius

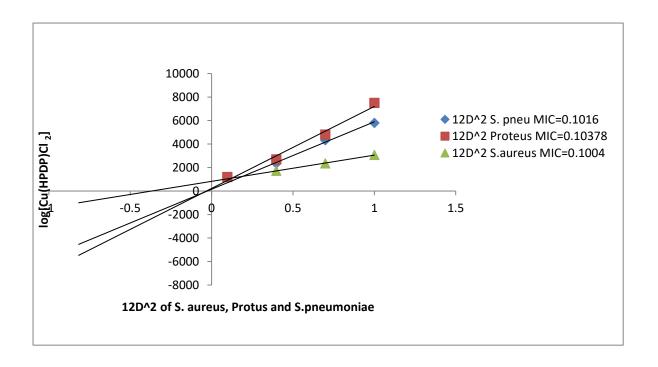



Fig 7: A Plot of log [Cu(HPDP)Cl<sub>2</sub>] angainst IZD<sup>2</sup> of S.pneu, Proteus and S.aureus.

#### CONCLUSION

A new hydrazone :3-[2-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1*H*-pyrazol-4-yl)hydrazinylidene]-2-thenoyltrifluoroacetone(HPDP) and its Fe(III), Co(II), Cu(II) and Ni(II) complexes were synthesized successfully. The *in vitro* antibacterial activities of [Cu(HPDP)Cl<sub>2</sub>], [Fe(PDP)<sub>2</sub>Cl(H<sub>2</sub>O)] shows that they can serve as antibacterial drugs.

### **REFERENCES**

 Masoudi-Khoram, M., Nematollahi, D., Khazalpour, S., Momeni, S., &Jamshidi, M. (2020). Comparative evaluation of the efficiency of batch and flow electrochemical cells in the synthesis of a new derivative of 2thenoyltrifluoroacetone. *Journal* of

- *Electroanalytical Chemistry*, 879, 114796.
- 2. Adhami, H. R., Linder, T., Kaehlig, H., Schuster, D., Zehl, M., &Krenn, L. (2012). Catechol alkenyls from Semecarpusanacardium: acetylcholinesterase inhibition and binding mode predictions. *Journal of ethnopharmacology*, 139(1), 142-148.
- 3. Lloyd, T., &Weisz, J. (1978). Direct inhibition of tyrosine hydroxylase activity by catechol estrogens. *The Journal of Biological Chemistry*, 253(14), 4841-4843.
- 4. Kuroiwa, K., Ohura, S. I., Morisada, S., Ohto, K., Kawakita, H., Matsuo, Y., & Fukuda, D. (2014). Recovery of germanium from waste solar panels using ion-exchange membrane and solvent extraction. Minerals Engineering, 55, 181-185.
- 5. Sun, F., Huo, X., Zhai, Y., Wang, A., Xu, J., Su, D., ...&Rao, Z. (2005). Crystal structure of mitochondrial respiratory

- membrane protein complex II. Cell, 121(7), 1043-1057.
- 6. Kabak, M., Elmali, A., Elerman, Y., &Durlu, T. N. (2000). Conformational study and structure of bis-N, N'-p-bromosalicylideneamine-1, 2-diaminobenzene. *Journal of Molecular Structure*, 553(1-3), 187-192.
- 7. EiAshry, E. S. H., Awad, L. F., Ibrahim, E. I., &Bdeewy, O. K. (2007). Synthesis of antipyrine derivatives derived from dimedone. *Chinese Journal of Chemistry*, 25(4), 570-573.
- 8. Burdulene, D., Palaima, A., Stumbryavichyute, Z., &Talaikite, Z. (1999). Synthesis and antiinflammatory activity of 4-aminoantipyrine derivatives of succinamides. *Pharmaceutical Chemistry Journal*, 33, 191-193.
- 9. Evstropov, A. N., Yavorovskaya, V. E., Vorob'ev, E. S., Khudonogova, Z. P., Gritsenko, L. N., Shmidt, E. V., ... &Saratikov, A. S. (1992). Synthesis and antiviral activity of antipyrinederivatives. *Pharmaceutical Chemistry Journal*, 26(5), 426-430.
- Raman, N., Dhaveethu Raja, J., &Sakthivel, A. (2007). Studies on DNA cleavage and antimicrobial screening of transition metal (II) complexes derived from tetradentate Schiff base. *Polish Journal of Chemistry*, 81(12), 2059.
- 11. Heinosuke, Y. (1967). Infrared Analysis of 2-pyrazolin-5-one derivatives. Applied Spectroscopy, 23, 19-29.
- 12. El-Saied, F. (2001). Synthesis and characterization of iron (III), cobalt (II), nickel (II) and copper (II) complexes of 4-formylazohydrazoaniline antipyrine. *Polish Journal of Chemistry*, 75(6), 773-783.
- 13. Heatley, N. G. (1944). A method for the assay of penicillin. *Biochemical Journal*, 38(1), 61.
- 14. Balouiri, M., Sadiki, M., &Ibnsouda, S. K. (2016). Methods for in vitro evaluating

- antimicrobial activity: A review. *Journal* of pharmaceutical analysis, 6(2), 71-79.
- 15. Ajayeoba, T. A., Akinyele, O. F., &Oluwole, A. O. (2017). Synthesis, characterisation and antimicrobial studies of mixed nickel (II) and copper (II) complexes of aroylhydrazones with 2, 21-bipyridine and 1, 10-phenanthroline. Ife *Journal of Science*, 19(1), 119-132.
- 16. El-Saied, F. A., Aly, M. M., & Anwar, A. M. (1993). β-diketone complexes of manganese (II), cobalt (II), nickel (II) and palladium (II). Transition Metal Chemistry, 18, 588-590.
- 17. Sakaguchi, U., & Addison, A. W. (1979). Spectroscopic and redox studies of some copper (II) complexes with biomimetic donor atoms: implications for protein copper centres. *Journal of the Chemical Society, Dalton Transactions*, (4), 600-608.
- 18. Al-Sha'alan, N. H. (2007). Antimicrobial activity and spectral, magnetic and thermal studies of some transition metal complexes of a Schiff base hydrazone containing a quinoline moiety. *Molecules*, 12(5), 1080-1091.
- 19. Motaleb, M. A., &Selim, A. A. (2019). Dioximes: Synthesis and biomedical applications. Bioorganic chemistry, 82, 145-155.
- 20. Motaleb, M. A., &Selim, A. A. (2019). Dioximes: Synthesis and biomedical applications. *Bioorganic chemistry*, 82, 145-155.
- 21. Mohanan, K., Athira, C. J., Sindhu, Y., &Sujamol, M. S. (2009). Synthesis, spectroscopic characterization and thermal studies of some lanthanide (III) nitrate complexes with a hydrazo derivative of 4-aminoantipyrine. *Journal of Rare Earths*, 27(5), 705-710.
- 22. Loncle, C., Brunel, J. M., Vidal, N., Dherbomez, M., &Letourneux, Y. (2004). Synthesis and antifungal activity of cholesterol-hydrazonederivatives. *European journal*

- of medicinal chemistry, 39(12), 1067-1071.
- 23. Abdel-Aal, M. T., El-Sayed, W. A., & El-Ashry, E. S. H. (2006). Synthesis and antiviral evaluation of some sugar arylglycinoylhydrazones and their oxadiazoline derivatives. Archiv der Pharmazie: *An International Journal Pharmaceutical and Medicinal Chemistry*, 339(12), 656-663.
- 24. AL-Hilfi, J. A. (2020, December). A structural study of 2-thenoyltrifluoroacetone Schiff bases and their thione derivatives: Synthesis, NMR and IR. In AIP Conference Proceedings (Vol. 2290, No. 1, p. 030030).AIP Publishing LLC.
- 25. Lopes, P. S., Paixão, D. A., De Paula, F. C. S., Ferreira, A. D. C., Ellena, J., Guilardi, S., & Guerra, W. (2013). A new copper (II) complex with 2-thenoyltrifluoroacetone and 2, 2-bipyridine: Crystal structure, spectral properties and cytotoxic activity. *Journal of Molecular Structure*, 1034, 84-88